[image: image3.png]Operations Manual PCCOM V2.0 & V5.1

CHAPTER 1

INTRODUCTION
The PCCOM V2.0 & V5.1 is a high performance, easy to use RS232/RS422 device driver for PC/XT, PC/AT, PC/386, PC/486 or compatibles. Under MS/DOS environment, you can set up your serial ports by PCCOM device driver, and these serial ports can be treated as COM1: and COM2: devices. The setup procedure provides flexible functions to specify the configuration of multi-serial card, that is, the hardware configurations of I/O port number, I/O port address, interrupt and interrupt vector are user selectable.

After the device driver is installed, It takes over communication between CPU and multi-serial cards such as four port card, eight port card, ... etc. For each I/O port, the service routine handles a ring buffer to keep track of all I/O data. Moreover, the PCCOM provides library routines (C, PASCAL, BASIC, FoxPro) and DOS communication

interface (DOS device driver, BIOS call) for several access levels.

The PCCOM V2.0 is an upgrade version of PCCOM V1.0 software it combines with PCCOM V1.0 and SERIAL DRIVER utilities. While PCCOM V5.1 is on upgrade version of PCCOM V2.0 software, that supports both ISA & PCI series cards. Therefore, PCCOM V2.0 & V5.1 device driver supports up to 64 ports and each serial port may be either 8250, 16450, or 16550 (FIFO) chip.

The features of PCCOM are:

· Support RS232/RS422 device driver under MS/DOS.

· I/O port number, I/O port address, interrupt, interrupt vector, and ring buffer size selectable.

· Communication parameters (baud rate, parity, ... etc.) selectable.

· Device name is specified by the user and it can be treated as a file to perform I/O operations.

· The device driver start up by directives of CONFIG.SYS file.

· Up to 64 ports can be driven and each serial port may be either 8250, 16450, or 16550 (FIFO) chip which are detected by PCCOM automatically.

· Support C, PASCAL, and BASIC, FoxPro language library routines to link user's program.

· Support RS232/RS422 diagnostic programs, file transfer, and virtual terminal evaluator software.

· Virtual terminal evaluator provides graphics capability.

Comparisons between PCCOM V2.0 and PCCOM V1.0 plus SERIAL DRIVER:

· Upgrade version of PCCOM V1.0 and combines with PCCOM V1.0 plus SERIAL DRIVER.

· New installation procedure. (need not make serial driver).

· Provides DOS device driver features which are COM1: and COM2: like.

· Supports 8250, 16450, and 16550 drivers.

· More than 8 ports use common IRQ (up to 24 ports).

· More than 8 ports in one device driver (up to 64 ports).

· More than 8K bytes ring buffer is used in one port (up to 32K bytes).

· Support ISA bus communication interface (it means IRQ select can be 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, 15).

· Provides both BIOS call and DOS device driver interface.

· Provides C, PASCAL, BASIC, FOXPRO libraries.

Comparison between PCCOM V5.1 and PCCOM V2.0

· Supports both ISA and PCI series cards.

CHAPTER 2

CHECK YOUR SYSTEM
2.1 Check List

Before getting started, check that your PCCOM package includes the following items:

· One diskette, which contains PCCOM software.

· PCCOM user's manual.

2.2 System Requirements

Before installing your PCCOM package, you need to make sure that the system configuration as follows:

· IBM PC/XT, PC/AT, PC/386, PC/486, Pentium or compatibles.

· MS/DOS V3.1 operating system or above.

· At least 1M bytes main memory.

· At least one serial port available.

2.3 Distribution Disk Contents

The distribution disk contains PCCOM device drivers and virtual terminal software, which are shown in the following:

PCCOM.SYS

 The PCCOM device driver.

PCCOM.OPT

 Hardware configuration of PCCOM startup file.

SETUP.EXE

 The SETUP program is used to setup communication

 protocol.

MODESET.EXE

 Report the status or reset some flags of specified port.

VT.EXE

 VT52/VT100 virtual terminal evaluator.

TESTCOM.EXE

 The serial port diagnostic program.

RX.EXE

 File transfer command. The RX receive data from remote

 computer.

TX.EXE

 File transfer command. The TX transmit data to remote

 computer or terminal.

COMLIB.H

 Header file of c library.

COMLIBBC.C COMLIBMS.C

Communication library routines to control PCCOM device driver. The library is written by Borland C and MSC language.

COMLIBV2.PAS

Communication library routines to control PCCOM device driver. The library is written by PASCAL language.

COMLIBGW.BAS COMLIBQK.BAS COMLIBQ.BAS

COMLIBTB.BAS

Communication library routines to control PCCOM device driver. The library is written by GWBASIC, Quick BASIC, Q BASIC, and Turbo BASIC.

COMLIBFP.LIB

Communication library routines to control PCCOM device driver. The library is written by FoxPro.

TESTCOM.CFG

 The configuration file of TESTCOM program.

VT.CFG

 The configuration file of VT program.

RSETUP.C

 The source program of SETUP program.

RRX.C

 The source program of RX program.

RTX.C

 The source program of TX program.

LOOPBACK.BAS

 Loopback test.

DTX.BAS

 Transfer file.

DRX.BAS

 Receive file.

LOOPBACK.C

 Loopback test.

DTERM.C

 ASCII terminal emulator.

DCLOCK.C

 Receive clock message.

LOOPBACK.PAS

 Loopback test.

DTERM.PAS

 ASCII terminal emulator.

*.CFG

 Configuration files of TESTCOM program.

*.OPT

 Configuration files of PCCOM.SYS.

README.DOC

 Release note.

2.4 Backup Your Diskette
Before you begin installing your PCCOM, you need to have working copies of PCCOM software diskette you received. This will help preserve your original PCCOM diskette. Copy the PCCOM diskette, using the DOS DISKCOPY command. Please see your DOS manual if necessary.

2.5 Some Restrictions

The PCCOM uses INT 1C interrupt, it was inserted in INT 1C structure, does not effect normal INT operation.

CHAPTER 3

PC COM INSTALLATION
The PCCOM.SYS is used to install device drivers for serial communication port. User may specifies I/O port address, baud rate, interrupt vector...etc. for different hardware configuration. To setup PCCOM complete the following steps:

STEP 1: Insert your serial communication adapter and

 Connect communication cable.

STEP 2: Start the computer.

STEP 3: Use PCCOM.SYS program to install device

 Driver and setup different communication protocol.

You must insert PCCOM.SYS commands to the CONFIG.SYS file, which will install device driver automatically when computer is booted.

3.1 Device Driver Installation

The PCCOM.SYS program is used to install device driver. To install PCCOM device driver, please write the following command format into CONFIG.SYS file.

 DEVICE = PCCOM.SYS @filename
@ - Prefix symbol to specify configuration file.

Filename - Configuration file, which is used to specify hardware configuration of the system.

EXAMPLE 3.1.1

 DEVICE = PCCOM.SYS @c:\pccom.opt

Set up device driver, which is specified by c:\pccom.opt file.

3.2 Hardware Configuration Specification

To specify hardware configuration, you must follow the PCCOM set up syntax. In this section, we only introduce how to write the hardware configuration file, more details syntax specification please see the APPENDIX C. In the hardware configuration file, three directives must be used.

/B:portno /D:devicename /A:setup

 /B:portno

 Specify the first port number.

 /D:devicename

 Specify the first device name.

 /A:setup

 Set up communication parameters and hardware configuration for ISA series cards.

/P: setup

 For ISA series cards.

/P: setup

Set up communication parameters and hardware configuration for PCI series cards.

The syntax is:

/P: [card ID: PortNo: Port]

Most important thing is to describe /A: directive for ISA series cards and the /P: directive for PCI series cards. now let’s introduce in the following. In order to familiar how to set up, we give some examples first.

EXAMPLE 3.2.1

Suppose we install one 4 port card, its port no. is defined from 4, its device name is defined from COM5. Hardware configuration is specified as:

 Port no. = 4, 5, 6, 7

 Device name = COM5, COM6, COM7, COM8

 Interrupt request = 5

 Port address = 2A0, 2A8, 2B0, 2B8

 Interrupt vector = 2BF

 Interrupt vector action = Active LOW

 Communication parameters

	port no.
	4
	5
	6
	7

	 port address
	2A0
	2A8
	2B0
	2B8

	 ring buffer
	1K
	512
	256
	128

	 baud rate
	9600
	9600
	9600
	9600

	 parity
	none
	none
	none
	none

	 data bit
	 8
	 8
	 8
	 8

	 parity bit
	 1
	 1
	 1
	 1

	 modem control
	DTR

RTS

OUT2
	DTR

RTS

OUT1
	DTR RTS
	NONE

	flow control
	XON
	XON
	XON
	XON

 Then the hardware configuration file is defined as:

#bios port no = 4, 5, 6, 7

/B:4

#dos device name = COM5, COM6, COM7, COM8

/D:COM5

/A:[5:

 2A0,4,2BF,LO:

 (1k :9600:N-8-1:DTR+RTS+OUT2:XON),

 (512:9600:N-8-1:DTR+RTS+OUT1:XON),

 (256:9600:N-8-1:DTR+RTS:XON),

 (128:9600:N-8-1::XON)]
Where # is comment. Each IRQ control one set of ports and was enclosed by [] block. Communication parameters for each port is enclosed by () block.

EXAMPLE 3.2.2
Suppose we install one 8 port card, hardware configuration is specified as:

 Port no. = 0, 1, 2, 3, 4, 5, 6, 7

 Device name = COM5, COM10, COM11, COM12

 COM13, COM14, COM15, COM16

 Interrupt request = 5

 Port address = 280, 288, 290, 298,

 2A0, 2A8, 2B0, 2B8

 Interrupt vector = 2C2

 Interrupt vector action = Active LOW

 Communication parameters

	 port no.
	0
	1
	2
	3

	 port address
	280
	288
	290
	298

	 ring buffer
	1K
	1k
	1k
	1k

	 baud rate
	4800
	4800
	4800
	4800

	 parity
	even
	even
	even
	even

	 data bit
	7
	7
	7
	7

	 parity bit
	2
	2
	2
	2

	 modem control
	DTR

RTS
	DT RTS
	DTR

RTS
	DTR

RTS

	 flow control
	DTR
	DTR
	DTR
	DTR

	port no.
	4
	5
	6
	7

	port address
	2A0
	2A8
	2B0
	2B8

	ring buffer
	2K
	2k
	2k
	2k

	baud rate
	4800
	4800
	4800
	4800

	parity
	none
	none
	none
	none

	data bit
	8
	8
	8
	8

	parity bit
	1
	1
	1
	1

	modem control
	DTR

RTS
	DTR

RTS
	DTR RTS
	DTR

RTS

	flow control
	XON
	XON
	XON
	XON

Then the hardware configuration file is defined as:

#bios port no = 0, 1, 2, 3, 4, 5, 6, 7

/B:0

#dos device name = COM5, COM10, COM11, COM12

COM13 COM14, COM15, COM16

/D:COM5, COM10

/A:[5:

 280,8,2C2,LO:

 (1k:4800:E-7-2:DTR+RTS:DTR) * 4,

 (2k:4800:N-8-1:DTR+RTS:XON) * 4]

EXAMPLE 3.2.3

Suppose we install 16 ports, hardware configuration is specified as

 Port no. = 8, 9, 10, 11, 12, 13, 14, 15,

 16, 17, 18, 19, 20, 21, 22,

 23

 Device name = COM1, COM3, AAA2, AAA3,

 AAA4, AAA5, AAA6, AAA7,

 AAA8, AAA9, AAA10, AAA11,

 AAA12, AAA13, AAA14, AAA15

 Interrupt request = 15

 Port address = 280, 288, 290, 298,

 2A0, 2A8, 2B0, 2B8,

 180, 188, 190, 198,

 1A0, 1A8, 1B0, 1B8,

 Interrupt vector = 2C2, 1C2

 Interrupt vector action = Active LOW

 Communication parameters

	port no.
	8
	9
	10
	11

	port address
	280
	288
	290
	298

	ring buffer
	1K
	1k
	1k
	1k

	baud rate
	2400
	2400
	2400
	2400

	parity
	none
	none
	none
	none

	data bit
	8
	8
	8
	8

	parity bit
	1
	1
	1
	1

	modem control
	DTR

RTS
	DTR

RTS
	DTR

RTS
	DTR

RTS

	flow control
	DTR
	DTR
	DTR
	DTR

	port number
	12
	13
	14
	15

	port address
	2A0
	2A8
	2B0
	2B8

	ring buffer
	1K
	1k
	1k
	1k

	baud rate
	2400
	2400
	2400
	2400

	Parity
	none
	none
	none
	none

	data bit
	8
	8
	8
	8

	parity bit
	1
	 1
	1
	1

	modem control
	DTR

RTS
	DTR

RTS
	DTR

RTS
	DTR

RTS

	flow control
	DTR
	DTR
	DTR
	DTR

Port 16 to port 23 are set to 1K bytes buffer, baud rate is 2400, none parity, 8 data bits, 1 stop bit, modem control flow are DTR+RTS, flow control is XON, and its port address start from 180 to 1B8, interrupt vector is 1C2, which was active low.

Then the hardware configuration file is defined as:

#bios port no= 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18 19, 20, 21, 22, 23

/B:8

#dos device name= COM1, COM3, AAA2, AAA3,

AAA4, AAA5, AAA6, AAA7,

AAA8, AAA9, AAA10, AAA11,

AAA12, AAA13, AAA14, AAA15

/D:COM1, COM3, AAA2

/A:[15:

280,8,2C2,LO:

 (1k:2400:N-8-1:DTR+RTS:RTS),

 (1k:2400:N-8-1:DTR+RTS:RTS),

 (1k:2400:N-8-1:DTR+RTS:RTS),

 (1k:2400:N-8-1:DTR+RTS:RTS),

 (1k:2400:N-8-1:DTR+RTS:DTR) * 4 :

 180,8,1C2,LO:

 (1k:2400:N-8-1:DTR+RTS:XON) * 8]
EXAMPLE 3.2.4

Suppose we install 16 ports, hardware configuration is specified as

 Port no. = 8, 9, 10, 11, 12, 13, 14, 15,

 16, 17, 18, 19, 20, 21, 22, 23

 Device name = COM1, COM3, AAA2, AAA3,

 AAA4, AAA5, AAA6, AAA7,

 AAA8, AAA9, AAA10, AAA11,

 AAA12, AAA13, AAA14, AAA15

 Interrupt request = 5,7

 Port address = 280, 288, 290, 298,

 2A0, 2A8, 2B0, 2B8,

 180, 188, 190, 198,

 1A0, 1A8, 1B0, 1B8,

 Interrupt vector = 2C2, 1C2

 Interrupt vector action = Active LOW

Port 8 to port 15 are set to 1K bytes buffer, baud rate is 1200, non parity, 8 data bits, 1 stop bit, modem control flow are DTR+RTS, flow control is XON, and its port address start from 280 to 2B8, interrupt is 5, interrupt vector is 2C2, which was active low.

Port 16 to port 23 are set to 1K bytes buffer, baud rate is 1200, non parity, 8 data bits, 1 stop bit, modem control flow are DTR+RTS, flow control is XON, and its port address start from 180 to 1B8, interrupt is 7, interrupt vector is 1C2, which was active low.

Then the hardware configuration file is defined as:

#bios port no= 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18 19, 20, 21, 22, 23

/B:8

#dos device name= COM1, COM3, AAA2, AAA3,

AAA4, AAA5, AAA6, AAA7,

AAA8, AAA9, AAA10, AAA11,

AAA12, AAA13, AAA14, AAA15

/D:COM1, COM3, AAA2

/A:[5:

 280,8,2C2,LO:

 (1k:1200:N-8-1:DTR+RTS:XON) * 8],

 [7:

 180,8,1C2,LO:

 (1k:1200:N-8-1:DTR+RTS:XON) * 8]
EXAMPLE 3.2.5
 Install standard COM1 and COM2.

/B:0

/D:COM1

/A:[4:

 3F8,1,0,HI:

 (8k:9600:N-8-1:DTR+RTS+OUT2:XON)],

 [3:

 2F8,1,0,HI:

 (8k:9600:N-8-1:DTR+RTS+OUT2:XON)]

EXAMPLE 3.2.6.

Install a single 4 Port PCCOM PCI card.

/D: COM5

/B:4

/P:[:4(1K: 9600: N-8-1:: XON) * 4]

EXAMPLE 3.2.7

Install a 2 Port PCCOM PCI card with card ID of 1 and a 8 Port PCCOM PCI card with card ID of 2.

/D: COM3

/B: 4

/P: [1:2:(1k:9600:N-8-1:: XON)*2)

/P: [2:8:(1k: 9600: N-8-1::XON)*8)
3.3 Some Constraints

In the hardware configuration file, each set owns one interrupt, which is enclosed by [] block, and each set controls either 1

port, 2 ports, 4 ports, 8 ports, 16 ports, or 24 ports, which is enclosed by () block. Up to 8 sets can be set in one computer system, and total support up to 64 serial ports. In the following, we describe some constrains when set up communication parameters.

device name

Begin with a letter and must consist only letters and digits. Its length can not more than 8.

interrupt

 Interrupt will be one of 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, 15.

interrupt vector

Interrupt vector will be any legal address or set to 0 means need not interrupt vector.

interrupt activation

Using HI or LO to set up active high or active low. If interrupt vector not be used, this filed is ignore.

buffer size

The maximum size for one port is 32KB, and one set can not be allocated more than 64KB. However, the size of total buffer used in driver can be larger than 64 KB.

baud rate

Baud rate can be any valid value in serial communication protocol.

parity

Either E, O, N can be selected which means even, odd, none parity.

data bit

 Either 5, 6, 7, 8 data bits can be selected.

stop bit

 Either 1 or 2 bits can be selected.

modem control

 You can choice communication protocol you need. Multiple protocols are allowed to set in on port. DTR (Data Terminal Ready), RTS (Request To Send), OUT1, and OUT2 can be

selected. If you ignore this field, it means you need not modem control.

flow control

Multiple protocol are allowed. It supports hardware handshaking which are DTR and RTS, and software handshaking XON. If you ignore this field, it means you need not flow control.

#

Begin in column one to specify as comments.

More detail syntax specification was specified in appendix C and communication parameters were introduced in appendix B.

CHAPTER 4

RUN TIME SUPPORT
4.1 How To Use Device

After device driver is installed, you may use device name as a file to perform I/O operations.

To send file to the COM4 port, the command is shown in the following.

A>copy filename COM4

To receive file from the COM5 port, the command is shown as

A>copy COM5 filename

4.2 Communication Parameters Set up

You may set up communication parameters by hardware configuration file, which will be executed when system is booted. However, you can set up communication parameters at run time by use SETUP command. The syntax specification of SETUP is

 SETUP [/v,]portno,[baud,parity,data,stop][,MC=ms][,FC=fs]

The default parameters are baud=9600, parity=N, data=8, stop=1, no MODEM control and flow control.

/v

Verbose. List all setting parameters. After serial ports are setup, system will check whether the specified port is good, if the corresponding port is bad, system will prompt ???? to notice user.

portno

 Specifies which port is control by PCCOM device driver.

baud

Baud rate. You may key in any baud rate, the device driver will adjust your baud rate to desire baud rate that the serial port can accept. If you key in 65535 baud, this means 115200. According to our test, The PCCOM device driver can accept up to 115200 baud under 8m cable.

parity

 Parity bit. N : none parity,

 E : even parity,

 O : odd parity.

data

 Data bits. 5 : five data bits,

 6 : six data bits,

 7 : seven data bits,

 8 : eight data bits.

stop

 Stop bits. 1 : one stop bit,

 2 : two stop bits.

MC=ms

Select Modem Control Register. Multiple protocol will be selected, which are DTR, RTS, OUT1, OUT2. NONE means ignore.

FC=fs

Select hardware or software handshaking. Multiple protocol are selected which are DTR, RTS, and XON. NONE means ignore.

The following examples are provided to help clarify the use of the SETUP command.

EXAMPLE 4.2.1

 A> SETUP 1,MC=DTR+RTS+OUT2

To setup I/O port 1. It set DTR, RTS, and OUT2 bits of modem control register, the default parameters are baud rate=9600, parity=N, data bits=8, stop bits=1, flow control is none.

EXAMPLE 4.2.2

 A> SETUP /v,2,9600,E,8,2,MC=DTR+RTS,

 FC=XON

To setup I/O port 2. Its handshaking protocol is XON/XOFF, baud rate is 9600, parity check is even, data bits is 8, stop bits is 2, modem control register is DTR+RTS. After I/O ports are setup, system lists all setting parameters.

EXAMPLE 4.2.3

A> SETUP 0,FC=XON

To setup I/O port 0. Its handshaking protocol is XON/XOFF. Baud rate =9600, parity check is none, data bits is 8, stop bits is 1, MC is none.

4.3 Setup and Status Report

You may change communication parameters, reset some communication flags or check the status of serial port by execute MODESET program, which is used interactively. When you execute the MODESET program, you only need to specify device name which you need, then modify communication parameters by arrow key to select the corresponding field.

CHAPTER 5

FILE TRANSFER
After device driver is installed and communication parameters are setup, you may use standard device name (COM1 and COM2 like) to send and receive data to/from the port you specify.

In PCCOM, we also provide TX.EXE and RX.EXE utilities to perform file transfer functions, which are more flexible.

5.1 Transmit File to Remote Site

The command format of TX.EXE is specified in the follows.

TX [/PnoLR < filename]
filename

Select which file to be transmitted to remote site. The < filename specification is I/O redirection of MS/DOS. Suppose you want key in characters from keyboard to remote site, you need not specify file name and after end of transmission, please type Z/CTRL.

Pno

 Select which I/O port to send data. The default is P0.

L

 Specify the transmitted data are local echo on the screen.

R

Specify the transmitted data are echo from remote site to local screen.

NOTE

If the received file size less one character than the transmitted file size, don't worry! the TX.EXE program eliminates one <CR> code from transmitted file.

EXAMPLE 5.1.1

Suppose we want send COMLIBBC.C file to remote site through port number 2. The command is as follows.

A> TX /P2 < COMLIBBC.C
EXAMPLE 5.1.2

To send RRX.C file to remote site through port number 0.

A> TX < RRX.C
EXAMPLE 5.1.3

To send RRX.C file to remote site through port number 3 and local echo the RRX.C contents on the monitor.

A> TX /P3L < RRX.C
EXAMPLE 5.1.4

Key in data to remote site through port number 0.

A>TX

hello, this is a test procedure.

Z/CTRL

5.2 Receive Data from Remote Site

The RX.EXE is used to receive data file from remote site, its command format is specified in the follows.

RX [/PnoE > filename]
 Select which I/O port to receive data. The default is P0.

L

 Specify the received data are local echo on the screen.

R

 Specify the received data are echo to the sending site.

Suppose you want store received data to disk file, please use MS/DOS I/O redirection features. To redirect your I/O, type the following command.

 A> RX /P4 >temp.dat
The received data will be stored to temp.dat file.

EXAMPLE 5.2.1

Suppose we want receive data from remote site through port number 2. The command is as follows.

 A> RX /P2
EXAMPLE 5.2.2

To receive data from remote site through port number 0.

A> RX

EXAMPLE 5.2.3

To receive data from remote site through port number 3 and stores received data to temp.dat file. Local echo the

received data are active.

 A> RX /P3L >temp.dat
5.3 Two Way Communication
To transfer file from one computer to another computer, the communication scheme and command are shown in the following.

[image: image1.png]
TX /P2L < temp.dat RX /P1L > aa.dat

There are several combinations of local echo and remote echo. In the following, we give some examples to explain how to use L and R parameters.

EXAMPLE 5.3.1

Suppose your receiver site is a terminal, and transmitter site is a PC, and you want to see the transmitted data on the PC screen, then command of transmitter site is

A> TX /P0L < TEMP.DAT

EXAMPLE 5.3.2

The same as the EXAMPLE 5.3.1, but you need not display transmitted data on the PC screen.

A> TX < TEMP.DAT
EXAMPLE 5.3.3

Suppose your transmitter site is terminal who has no ability to display the key in data on the terminal (no local echo ability) and receiver site is PC. In this case the receiver site must echo received characters to the terminal. The command is

A> RX /R > AA.DAT
EXAMPLE 5.3.4
The same as EXAMPLE 5.3.3, but you want receiver site display the received data on the screen.

 A> RX /LR > AA.DAT
EXAMPLE 5.3.5

Both receiver and transmitter site are PC, and you need not show the transmitted data.

 A> TX < TEMP.DAT

 A> RX > AA.DAT

EXAMPLE 5.3.6
The same as EXAMPLE 5.3.5, but you need show the data on the both computer.

 A> TX /L < TEMP.DAT

 A> RX /L > AA.DAT
another method is

 A> TX /R < TEMP.DAT

 A> RX /LR > AA.DAT

CHAPTER 6

PROGRAMMING TECHNICAL UNDER MS DOS
There are three methods to write application programs to control serial communication.

 1. Use device driver name to perform I/O.

 2. Use PCCOM library through DOS interrupt

 routines.

 3. Use low-level BIOS interrupt routines.

6.1 How to Use Device Driver

After device driver is installed, you may use device name (such as COM5, COM6, ... etc.) as a file to perform I/O operations. Since many high level languages provide several kinds of I/O operations, e.g. in C language, the write statement for low level I/O and fprintf for high level I/O. You must care which I/O routine is used by yourself to prevent the lose of I/O data, if you use high level I/O, you must use flush to dump buffer contents to serial device when necessary.

In the distribution disk, we provide BASIC, C, PASCAL, and FoxPro examples, all of these programs use device driver.

 LOOPBACK.BAS
 Loopback test.

 DTX.BAS

 Transfer file.

 DRX.BAS

 Receive file.

 LOOPBACK.C

 Loopback test.

 DTERM.C

 ASCII terminal emulator.

 DCLOCK.C

 Receive clock message.

 LOOPBACK.PAS

 Loopback test.

 DTERM.PAS

 ASCII terminal emulator.

6.2 PCCOM Library

PCCOM provides C, PASCAL, BASIC, and FOXPRO library routines to let user to write application programs to control serial communication via device drivers.

To write an application program, you must link COMLI115.C or COMLI460.C (Borland C), COMLIBMS.C (MSC), PCCOM115.PAS or PCCOM460.PAS (PASCAL), COMLIBGW.BAS (GWBASIC), COMLIBQK.BAS (Quick BASIC) or COMLIBQ.BAS (Q BASIC) file according to your selection language. In the following, we describe the PCCOM library more details:

	Routine Name
	Description

	cominit
	setup communication parameters

	comtxch
	send a character

	comrxch
	receive a character

	comstat
	check communication status

	comactive
	check if port is usable

	comsetDTR
	set DTR signal ON or OFF

	compeek
	check next char in queue

	comsetflow
	set flow control

	comtxblk
	send one block data

	comrxblk
	receive one block data

	combreak
	end break signal

	cominstalled
	check if driver installed

	comsetport
	set address of serial port

	comsetvector
	set interrupt vector

	comsetactive
	set active low or high

	comsetMCR
	set MCR contents

	compurgerxbuf
	remove received buffer data

	comtxs
	send a character string

	comrxs
	receive a character string

	comsettimeout
	set time out

	comgettimeout
	get time out

	combufstat
	return no. of chars in queue

	comgetMCR
	get MCR contents

	comgetFC
	get flow control

	comgetsets
	get number of PCCOM sets

	comgetsetinfo
	get PCCOM set information

	comgetinfo
	get port status

	comgetports
	get number of PCCOM ports

	comdetectport
	detect if the port exist

	comgetportinfo
	get one port information

	comrxoff
	stop send data

	comrxon
	restart send data

1. cominit(portno, baud, db, parity, sb)

 int cominit

 unsigned int baud

 int portno, db, parity, sb

The cominit is used to setup several communication parameters.

portno (int)

port number that defined in configuration file.

baud (unsigned int)
baud rate. Either B38400, B19200, B9600, B4800, B2400, B1200, B600, B300.

	 B38400 (38400)
	38400 baud.

	 B19200 (19200)
	19200 baud.

	 B9600 (9600)
	9600 baud.

	 B4800 (4800)
	4800 baud.

	 B2400 (2400)
	2400 baud.

	 B1200 (1200)
	1200 baud.

	 B600 (600)
	600 baud.

	 B300 (300)
	300 baud.

db (int)

 data bits. Either CS8, CS7, CS6, CS5.

	 CS8 (8)
	 8 bits

	 CS7 (7)
	 7 bits

	 CS6 (6)
	 6 bits

	 CS5 (5)
	 5 bits

parity (int)

 parity bit. Either PNONE, PEVEN, PODD.

	PNONE (0
	none parity check.

	PODD (1
	odd parity.

	PEVEN (2)
	even parity.

sb (int)

 stop bits. Either ST1 or ST2.

	ST1 (1)
	one stop bit.

	ST2 (2)
	two stop bits.

return value (int)
 0 : success.

 1 : fail.

2. comtxch(portno, ch)

 int comtxch

 int portno

 char ch

The comtxch is used to send a character to serial port.

ch (char)

 transmitted character

return value (int)

	0
	success.

	1
	fail.

 3. comrxch(portno, ch)

 int comrxch

 int portno

 char *ch

 The comrxch is used to get a character.

ch (char*)

 received character.

return value (int)

	 0
	success.

	 1
	fail (receive no character).

4. comstat(portno)

 int comstat

 int portno

The comstat is used to get serial port status, the status indicator is shown in the following.

return value (int)

	bit 15
	 time out error.

	 bit 14
	 transmitter shift register empty.

	 bit 13
	 transmitter holding register empty.

	 bit 8
	 data ready (data available in input buffer).

	 bit 7
	 received line signal detect (RLSD).

	 bit 5
	 data set ready (DSR).

	 bit 4
	 clear to send (CTS).

You may check the parameters to detect which bit is set.

	definition
	position
	value

	S_CTS
	4
	0X0010

	 S_DSR
	5
	0X0020

	 S_DCD
	7
	0X0080

	 S_RDA
	8
	0X0100

	 S_THRE
	13
	0X2000

	 S_TSRE
	14
	0X4000

	 S_TIMEOUT
	15
	0X8000

5. comactive(portno)

 int comactive

 int portno

 Check if the port is active.

return value (int)

	 1
	active

	 0
	inactive

6. comsetDTR(portno,n)

 void comsetDTR

 int portno,n

 Set DTR signal ON or OFF.

n (int)

	ACTIVE (1)
	set DTR ON

	INACTIVE (0)
	set DTR OFF

 7. compeek(portno)

 int compeek

 int portno

The compeek is used to perform nondestructively read a character. The read character remains in the receive buffer.

return value (int)

	0XFFFF
	no character

	 ?
	received character

8. comsetflow(portno,n)

 void comsetflow

 int portno, n

 To set communication protocol.

n (int)

	 F_XONXOF (0X09)
	set XON/XOFF protocol.

	 F_RTSCTS (0X01)
	set CTS/RTS protocol.

	 F_DTRDSR (0X04)
	set DSR/DTR protocol.

9. comtxblk(portno, pointer, n)

 int comtxblk

 int portno,n

 void *pointer

To transmit a block of data, it uses one BIOS call to transmit a block of data.

pointer (pointer)

 pointer to start of block.

n (int)

 block length.

return value (int)

 number of characters be sent.

10. comrxblk(portno, pointer, n)

 int comrxblk

 int portno, n

 void *pointer

To receive a block of data, it uses one BIOS call to receive a block of data.

pointer (pointer)

 pointer to start of block.

n (int)

 number of characters should be received.

return value (int)

 number of characters actually received.

11. combreak(portno,brk)

 void combreak

 int portno, brk

 Send the break signal to driver.

brk (int)

	 ACTIVE (1)
	break the communication.

	 INACTIVE (0)
	unbreak the communication

12. cominstalled(portno)

 int cominstalled

 int portno

 Check if the driver is installed ?

return value (int)

	0
	is installed

	1
	not installed

13. comsetport(portno, addr)

 void comsetport

 int portno, addr

The comsetport is used to set serial port address.

addr (int)

 serial port address.

14. comsetvector(portno, addr)

 void comsetvector

 int portno, addr

The comsetvector is used to set interrupt vector address. After interrupt vector is set, when interrupt is emerged then

the device driver will detect interrupt vector to check which port emerges the interrupt.

addr (int)

 interrupt vector address. The address is designed at hardware adapter.

15. comsetactive(portno, active)

 void comsetactive

 int portno

 char active

The comsetactive is used to set interrupt vector is active low or high.

active (char)

	0
	 active low.

	1
	 active high

16. comsetMCR(portno, mcr)

 void comsetMCR

 int portno, mcr

The comsetMCR is used to control the contents of modem control register. Please see APPENDIX B for more details.

mcr (int)

	bit 7
	0

	bit 6
	0

	bit 5
	0

	bit 4
	loopback.

	bit 3
	OUT2 signal

	bit 2
	OUT1 signal

	bit 1
	RTS signal

	bit 0
	DTR signal

.

 17. compurgerxbuf(portno)

 void compurgerxbuf

 int portno

Remove any received buffer data from specify port.

18. comtxs(portno, s)

 int comtxs, portno

 char *s

The comtxs is used to send one string to serial port by calling BIOS for each character.

s (char*)

 one character string to be sent.

return value (int)

	 0
	success

	 1
	fail

19. comrxs(portno, s)

 int comrxs, portno

 char *s

The comrxs is used to get one string from ring buffer by calling BIOS for each character. This routine gets characters from ring buffer until it find <CR> or ring buffer is empty.

s (char*)

 received string.

return value (int)

	0
	fail

	1
	Success

20. comsettimeout(portno,timeout)

 void comsettimeout

 int portno

 unsigned int timeout

Set time out value about tx; when transmitter buffer in the specified port is full, the driver will wait until buffer empty or the timeout value is expired.

timeout (unsigned int)

time out value, the unit is 1/18 sec.

21. comgettimeout(portno)

 unsigned int comgettimeout

 int portno

 Get the tx timeout value.

 return value (unsigned int)

 The time out value, unit is 1/18 sec.

22. combufstat(portno)

 int combufstat

 int portno

The combufstat is used to count the received characters in buffer.

return value (int)

	0xFFFF
	Buffer overflow

	otherwise
	Number of characters in received buffer

23. comgetMCR(portno)

 char comgetMCR

 int portno

 Get the value of MCR.

 return value (char)

 modem control value (see comsetMCR).

24. comgetFC(portno)

 char comgetFC

 int portno

 Get flow control value.

 return value (int)

 Flow control value (see comsetflow).

25. comgetsets()

 int comgetsets

Get number of PCCOM set which are controlled by device driver.

return value (int)

 Number of PCCOM set.

26. comgetsetinfo(portno)

 BiosComSet_t *comgetsetinfo

 int portno

To get PCCOM set information about specified port, which belongs to this set.

return value (BiosComSet_t*)

 The set information, which is defined as

typedef struct {

 unsigned char irq;

 unsigned int portno;

 unsigned int groupno;

 unsigned int whichgroup;

 struct {

 unsigned int base;

 unsigned int vector;

 unsigned char active;

 unsigned char portno;

 } group[8];

 } BiosComSet_t;
 Where

	irq
	irq number of this set.

	portno
	number of serial ports in this set.

	groupno
	number of groups in this set.

	whichgroup
	the specified belongs to which group

	base
	base I/O port address.

	vector
	interrupt vector address.

	active
	active status.

	port
	number of ports in this group.

27. comgetinfo(portno, baud, db, parity, sb)

 void comgetinfo

 unsigned int *baud

 int portno, *db, *parity, *sb

The comgetinfo is used to get communication parameters of specified port.

baud (unsigned int*)

 baud rate.

db (int*)

 data bits. Either 5, 6, 7 or 8 data bits.

parity (int*)

 parity bit. Either NONE, EVEN, ODD.

	 NONE (0)
	none parity check.

	 ODD (1)
	odd parity.

	 EVEN (2)
	even parity.

sb (int*)

 stop bits. Either 1 or 2 stop bits.

28. comgetports()

 int comgetports

Get the number of PCCOM ports controlled by the PCCOM driver.

return value (int)

 The number of PCCOM ports.

29. comdetectport(portno)

 int comdetectport

 int portno

The comdetectport is used to detect the serial port is exist or not.

return value (int)

	 0
	the port is bad.

	 1
	the port is ok.

30. comgetportinfo(portno)

 BiosComport_t *comgetportinfo

 int portno

 Retrieve all information about one specified PCCOM port.

return value (BiosComport_t*)

 The port information which is defined as

 typedef struct {

 unsigned int addr;

 unsigned int baud;

 unsigned char lcr;

 unsigned char mcr;

 unsigned char fc;

 unsigned char rx_qsz;

 unsigned char rx_qfree;

 unsigned char rx_enable;

 unsigned char tx_enable;

 } BiosComport_t;

Where

	addr
	port address.

	baud
	baud rate.

	lcr
	line control register value.

	mcr
	modem control register value.

	fc
	flow control protocol.

	rx_qsz
	received ring buffer size.

	rx_qfree
	free space in rx ring buffer.

	rx_enable
	flag to notify the port receivable.

	tx_enable
	flag to notify the port transmission.

31. comrxoff(portno)

 void comrxoff

 int portno

 Notify the peer to stop sending data.

32. comrxon(portno)

 void comrxon

 int portno

 Notify the peer to restart sending data.

6.3 Examples

In the distribution disk, we provide file transfer and setup program, all of these programs use PCCOM library.

 RSETUP.C

 Setup communication parameters.

 RTX.C

 Transfer file.

 RRX.C

 Receive file.

6.4 I/O Control Via Software Interrupt

To communicate directly with device drivers, the PCCOM provides a set of sub-functions under extended BIOS INT 14H, and DOS IOCTL INT 21H. All these functions are included in the PCCOM library, however, if you want control I/O through BIOS interrupt by yourself, you need prepare CPU register contents and fork a system call. In the following, we will describe these I/O control functions and teach users to use it.

All BIOS functions are designed as a FOSSIL driver, the specification of FOSSIL driver is shown in the "FOSSIL.DOC" file. Our PCCOM BIOS functions specification are shown in the "PCCOM.SPC" file. The examples of DOS IOCTL function calls are shown in the

"COMDOS.C" file.

Before you perform system call, you must specify sub-function number in ah register.

	Ah
	Description

	 00H
	setup communication parameters

	 01H
	send one character

	 02H
	receive one character

	 03H
	get serial port status

	 04H
	activate port

	 05H
	deactivate port

	 06H
	set DTR

	 07H
	return time tick information

	 0AH
	purge input buffer

	 0BH
	send one character with no wait

	 0CH
	nondestructive read ahead

	 0FH
	flow control for serial I/O

	 18H
	block read

	 19H
	block write

	 1AH
	break begin or end

	 1BH
	return information about this driver

	 30H
	get buffer status

	 31H
	set port address

	 32H
	set interrupt vector address

	 3AH
	get the number of PCCOM sets

	 3BH
	check port exist

	 3CH
	get port information

	 3DH
	stop sending data

	 3EH
	restart sending data

	 3FH
	set time out

	 40H
	get time out value

	 44H
	IOCTL input/output functions (INT 21H)

 1. set up communication parameters

ah register

 always set to 0h.

al register

 al is used to setup communication parameters.

 bit 7, 6, 5 : setup baud rate.

 bit 4, 3 : setup parity.

 bit 2 : setup stop bits.

 bit 1, 0 : setup data bits.

	baut rate
	bit 7
	bit 6
	bit 5

	9600
	1
	1
	1

	4800
	1
	1
	0

	2400
	1
	0
	1

	1200
	1
	0
	0

	600
	0
	1
	1

	300
	0
	1
	0

	38400
	0
	0
	1

	19200
	0
	0
	0

	 parity
	4
	3

	 even
	1
	1

	 odd
	0
	1

	 none
	x
	0

	stop bit
	bit 2

	2
	1

	1
	0

	data bit
	bit1
	bit 0

	8
	1
	1

	7
	1
	0

	6
	0
	1

	5
	0
	0

dx register

 port number.

return value (ax register)

bit 15 to bit 8 : line status.

bit 7 to bit 0 : modem status.

	 bit 15
	time out error

	 bit 14
	transmitter shift register empty

	 bit 13
	transmitter holding register empty

	 bit 12
	0

	 bit 11
	0

	 bit 10
	0

	 bit 9
	Input buffer overrun

	 bit 8
	data available in receive buffer

	 bit 7
	data carrier detect

	 bit 6
	ring indicator

	 bit 5
	data set ready

	 bit 4
	clear to send.

	 bit 3
	always set to 1 upon return

	 bit 2
	delta data carrier detect

	 bit 1
	delta DSR

	 bit 0
	delta CTS

2. send a character

ah register

 always set to 1h.

al register

 character.

dx register

 port number.

return value (ax register)

 line status and modem status.

3. receive a character

ah register

 always set to 2h.

al register

 received character.

dx register

 port number.

return value

 ah : line status.

 al : receive character.

4. get port status

ah register

 always set to 3h.

dx register

 port number.

return value (ax register)

 line status and modem status.

5. activate port

ah register

 always set to 4h.

dx register

 port number.

return value

 ax : 1954h if successful.

 bl : maximum function number supported.

 bh : rev of FOSSIL specification.

6. set DTR

ah register

 always set to 6h.

al register

	 0
	turn off DTR.

	 1
	turn on DTR.

dx register

 port number.

7. nondestructive read ahead

ah register

 always set to Ch.

dx register

 port number.

return value

 ah : 0, if character is available.

 al : the read character.

 ax : FFFF, if no character is available.

The character read by this operation is not removed from input queue. This means that the same character will be obtained in next read operation.

8. set flow control

ah register

 always set to Fh.

al register

 enable or disable flow control. When set to 1, means enable.

	 bit 0
	 enable / disable receiving XON/XOFF

	 bit 1
	 enable / disable RTS/CTS.

	 bit 2
	 enable /disable DTR/DSR.

	 bit 3
	 enable / disable transmitting XON/XOFF

 dx register

 port number.

9. receive block from a port

ah register

 always set to 18h.

dx register

 port number.

cx register

 length of block.

es:di register

 starting address of block.

return value (ax register)

 count of received bytes.

10. send block to a port

ah register

 always set to 19h.

dx register

 port number.

cx register

 number of bytes to be sent.

es:di register

 starting address for received block.

return value (cx register)

 count of sent bytes.

11. send break signal

ah register

 always set to 1Ah.

dx register

 port number.

al register

	1
	send break signal.

	0
	stop to send break signal.

12. return information about PCCOM driver

ah register

 always set to 1Bh.

dx register

 port number.

cx register

 length of block.

es:di register

 starting address of block.

This function will transfer information about PCCOM and its current status to the caller.

return value (ax register)

The data structure (assembly language style)currently returned by PCCOM is as follows:

 ;DEFINE BEGIN OF STRUCTURE

 INFO EQU $

 ;SIZE OF THIS STRUC IN BYTES

 STRSIZ DW INFO_SIZE

 ;FOSSIL SPECIFICATION REV

 MAJVER DB CURR_FOSSIL

 ;REV OF THIS DRIVER.

 MINVER DB CURR_REV

 ;"FAR" POINTER TO ASCIIZ

 ;DRIVER DESCRIPTION STRING.

 IDENT DD ID_STRING

 ;BYTE SIZE OF THE INPUT BUFFER

 IBUFR DW IBSIZE

 ;NUMBER OF BUFFERED RECV BYTES

 IFREE DW ?

 ;BYTE SIZE OF THE XMIT BUFFER

 OBUFR DW OBSIZE

 ;NUMBER OF BUFFERED XMIT BYTES

 OFREE DW ?

 ;WIDTH OF DISPLAY SCREEN

 SWIDTH DB SCREEN_WIDTH

 ;HEIGHT OF DISPLAY SCREEN

 SHEIGHT DB SCREEN_HEIGHT

 ;BAUD RATE, COMPUTER TO MODEM

 BAUD DB ?

13. get buffer status

ah register

 always set to 30h.

dx register

 port number.

return value (cx)

 number of characters in buffer.

 FFFh : overflow.

14. set port address

ah register

 always set to 31h.

dx register

 port number.

bx register

 port address.

15. set vector address

ah register

 always set to 32h.

dx register

 port number.

bx register

 vector address.

16. set active status in vector

ah register

 always set to 33h.

dx register

 port number.

al register

	 0
	Active low

	 1
	Active high

17. set modem control

ah register

 always set to 34h.

dx register

 port number.

al register

 modem control value.

	 bit 7
	0

	bit 6
	0

	bit 5
	0

	bit 4
	Loopback

	bit 3
	OUT2

	bit 2
	OUT1

	bit 1
	RTS

	bit 0
	DTR

 18. get port parameters

ah register

 always set to 35h.

dx register

 port number.

return value(al)

 communication parameters. (see 00H)

19. get modem control value

ah register

always set to 36h.

dx register

port number.

al register

modem control value.

20. get flow control value

ah register

 always set to 37h.

dx register

 port number.

return value (al)

 flow control value. see 0fH.

21. get the total number of PCCOM sets

ah register

 always set to 38h.

return value (ax)

 total number of PCCOM sets.

22. get information about each PCCOM set

ah register

 always set to 39h.

dl register

 set number.

es:di register

 starting address of block.

return value (ax)

 number of bytes returned in buffer point by es:di

 register.

Data structure :

irq db ;interrupt request

portno dw ;total number of ports in

 ;this set

groupno dw ;total number of groups in

 ;this set

whichgroup dw ;specified port in which group

base dw ;base address for this com set

vector dw ;interrupt vector address

active db ;active hi or lo in vector

portno db ;total number of ports in

 ;this com set

 : : :

 : : :

base dw ;base address for this com set

vector dw ;interrupt vector address

active db ;active hi or lo in vector

portno db ;total number of ports in

Represented in C:

 typedef struct {

 unsigned char irq;

 unsigned int portno;

 unsigned int groupno;

 unsigned int whichgroup

 struct {

 unsigned int base;

 unsigned int vector;

 unsigned char active;

 unsigned char portno;

 } group[8];

 } BiosComSet_t;

23. get the total number of PCCOM ports

ah register

always set to 3Ah.

return value (ax)

 total number of ports.

24. detect whether the the port is existent

ah register

 always set to 3Bh.

dx register

 port number.

return value (ax)

	55AA
	 this port exists.

	0
	 this port not existent.

25. get information of one PCCOM port

ah register

 always set to 3Ch.

dx register

 port number.

es:di register

 pointer to space containing port information.

turn value (ax)

Data structure :

addr dw ;port address

baud_rate dw ;baud rate

lcr db ;line control register value

mcr db ;modem control register value

fc db ;flow control protocol

q_sz dw ;rx ring buffer size

q_free dw ;free space in ring buffer

rx_enable db ;flag to notify the port

 ;receivable

tx_enable db ;flag to notify the port

 ;transmission

Represented in C:

typedef struct {

 unsigned int addr;

 unsigned int baud;

 unsigned char lcr;

 unsigned char mcr;

 unsigned char fc;

 unsigned char rx_qsz;

 unsigned int rx_qfree;

 unsigned char rx_enable;

 unsigned char tx_enable;

 } BiosComPort_t;

26. notify peer to stop sending data

ah register

 always set to 3Dh.

dx register

 port number.

27. notify peer to restart sending data

ah register

 always set to 3Eh.

dx register

 port number.

28. set time out value

ah register

 always set to 3Fh.

dx register

 port number.

cx register

 time out value in unit of 1/18 sec.

29. get time out value

ah register

always set to 3Fh.

dx register

port number.

return value (cx)

 time out value in unit of 1/18 sec.

6.5 PCCOM DOS IOCTL functions

Under the DOS interrupt 21H and its sub function 44H, user can use IOCTL to access PCCOM character device.

1. IOCTL input function

 Input:

 AH = 44H

 AL = 02H

 BX = handle number

 CX = number of bytes to transfer

 DS:DX = segment: offset of data buffer

 (viewed as control block)

 Output:

 If function is successful:

 Carry flag is clear.

 AX = number of bytes to transfer.

 Data buffer at DS:DX contains data

 read from device driver.

 If function is not successful:

 Carry flag is set.

 AX = error code:

	01H
	invalid function

	05H
	access denied

	06H
	invalid handle

	0DH
	invalid data (bad control block)

The transfer address(DS:DX) points to a control block that is used to communicate with the device driver. The first byte of the control block determines the request that is being made.

	Code
	Bytes
	Function

	 0
	3
	get serial port status

	 1
	3
	get port communication parameters

	 2
	3
	get modem control value

	 3
	3
	get flow control value

	 4
	3
	get the size of available data in rx buffer

· Get Serial Port Status

 PortSts db 0 ;control block code

 dw ? ;serial port status

The format of serial port status is referred to BIOS function 03H.

· Get Port Setting

PortParam db 1 ;control block code

 db ? ;port communication parameters

 db ? ;not used

The format of serial port setting parameters is referred to BIOS function 00H.

· Get Modem Control Value

 PortMC db 2 ;control block code

 db ? ;modem control value

 db ? ;not used

The format of modem control value is referred to BIOS function 36H.

· Get Flow Control Value

 PortFC db 3 ;control block code

 db ? ;flow control value

 db ? ;not used

 The format of flow control value is referred to BIOS

 function 0FH.

· Get the Size of Available data in RX Buffer

 PortRXData db 4 ;control block code

 dw ? ;available data size in rx buffer

2. IOCTL Output functions

Input:

 AH = 44H

 AL = 03H

 BX = handle number

 CX = number of bytes to transfer

 DS:DX = segment:offset of data buffer

 (viewed as control block)

 Output:

 If function is successful:

 Carry flag is clear.

 AX = number of bytes to transfer.

 If function is not successful:

 Carry flag is set.

 AX = error code:

	01H
	invalid function

	05H
	access denied

	06H
	invalid handle

	0DH
	invalid data (bad control block)

The transfer address(DS:DX) points to a control block that is used to communicate with the device driver. The first byte of the control block determines the request that is being made.

	Code
	Bytes
	Function

	 0
	2
	set port communication parameters

	 1
	 2
	set modem control value

	 2
	2
	 set flow control value

	 3
	 2
	turn on/off "break"

	 4
	 2
	purge rx buffer

· Set Port Communication Parameters

 PortParam db 0 ;control block code

 db XX ;port communication parameters

 This function is the same as BIOS function 00H.

· Set Modem Control Value

 PortMC db 1 ;control block code

 db XX ;modem control value

 This function is the same as BIOS function 34H.

· Set Flow Control Value

 PortFC db 2 ;control block code

 db XX ;flow control value

 This function is the same as BIOS function 0FH.

· Turn on/off "BREAK"

 PortFC db 2 ;control block code

 db XX ; 1 : start sending 'break'

 ; 0 : stop sending 'break'

 This function is the same as BIOS function 1AH.

· Purge in RX Buffer

 PortRXData db 4 ;control block code

 db ? ;not used

 This function is the same as BIOS function 0AH.

CHAPTER 7

DIAGNOSTIC PROGRAM
In this chapter we will introduce how to use diagnostic programs to prove the PCCOM device driver is active and your serial port is work normally.

7.1 TESTCOM Diagnostic Program

The TESTCOM program provides diagnostic routine to test your serial ports under MS/DOS operating system. It provides internal loopback test and external loop test.

To test your serial port under MS/DOS, please type

A> TESTCOM

then screen will display as follows:

[image: image2.png]
wait a moment, the screen will display as follows:

1. SETUP RS232

You may specify communication parameters such as baud rate, data bits ... etc. Since these communication parameters are set up when computer system is boot. However, if you want reset communication parameters, please select setup RS232 function to setup new communication parameters. We provide several preconfigurated file of our multi-serial adapters, which are named *.CFG, you may rename one of these files to TESTCOM.CFG.

2. INTERNAL LOOP TEST

The internal loop test provides a loopback feature for diagnostic testing of the 8250/16450/16550 chip. You may type characters from keyboard, then the received character is display on the screen. When something error such as time out, frame error ... etc., the reversed character will display on the screen to indicate communication fail. We note that some 16450 chip will not emerge an interrupt when loopback feature is selected.

3. EXTERNAL LOOP TEST

When you select external loop test, your typing characters will be sent from one serial port to another serial port. Before you select external loop test, please connect pin 2 of send port to pin 3 of receiver port and pin 3 of send port to pin 2 of receiver port. Since the serial communication is full duplex, you can loopback send and received port in one port.

 a. Connects two rs232 ports

 pin 2 TxD RxD pin 3

 pin 3 RxD TxD pin 2

 b. Loopback

 pin 2 TxD

 pin 3 RxD

4. AUTO TEST

When you select auto test, the TESTCOM will test your serial port automatically. Both internal loop test and external loop test are used to check the selected port. The sending character are read from README.DOC file.

 5. SAVE CONFIGURATION

Save communication parameters to disk file. When TESTCOM is loaded, it will load the preconfiguration from disk file. The configuration file name is TESTCOM.CFG.

You can use <RETURN> key to let TESTCOM accepts your selection during you execution the TESTCOM program, and press <ESC> key to return the last menu.

APPENDIX A

VIRTUAL TERMINAL

VT.EXE is a terminal evaluation program which is used to let your PC to active like a VT52 terminal. Either the virtual terminal features and file transfer features are available in VT.EXE software, moreover some extended graphics capability are also supported.

A.1 Valid Control Sequence of VT

VT.EXE supports part of VT52 control sequence which are list in the following.

1. Cursor up code= ESC A
 Move the active position upward one position.

2. Cursor down code= ESC B

 Move the active position downward one position.

3. Cursor right code= ESC C
 Move the active position to the right.

4. Cursor left code= ESC D
 Move the active position to the left.

5. Cursor to home code= ESC H

 Move the cursor to the home position.

6. Reverse line feed code= ESC I

Move the active position upward one position without altering the column position. If the active position is at the top margin, a scroll down is performed.

7. Erase to end of screen code= ESC J
 Erase all characters from the active position to the end of

 screen.

8. Erase to end of line code= ESC K

Erase all characters from the active position to the end of the current line.

9. Direct cursor address code= ESC Y lin col
Move the cursor to the specified line (lin) and column (col).

A.2 Extended Graphics Capability

VT.EXE provides extended graphics capability which may accept a sequence of graphics control code (which is represented by ASCII code) to draw a line, circle, ellipse ... etc. on the display monitor. The graphics functions can be used under EGA, VGA, hercules, and 8514 modes or other display mode that supported by turbo C graphics tools. The control sequence of these graphics primitives are list in the following.

1. Enter graphics mode

 code= ESC P

When VT.EXE accepts ESC P, then the terminal evaluator enter to graphics mode to ready accept graphics operation commands. The resolution of graphics mode depend on your PC monitor and adapter type which is detected by VT.EXE automatically.

2. Exit from graphics mode to text mode

 code= Q

When terminal evaluator is at graphics mode, it can accept Q to enter text mode.

3. Move cursor to X,Y position

 code= Mxxxxxyyyyy

 Move to (xxxxx,yyyyy) position. Where xxxxx represents X coordinate, which length is five digit. yyyyy represents Y coordinate, which length is five digit.

4. Draw to X,Y position

 code= Dxxxxxyyyyy
From current position draw to (xxxxx,yyyyy) position.

5. Draw a line

 code= Lxxxxxyyyyywwwwwzzzzz

 Draw a line from (xxxxx,yyyyy) to (wwwww,zzzzz).

6. Draw a circle

 code= Cxxxxxyyyyyrrrrr

Draw a circle whose center is (xxxxx,yyyyy) and its radius is rrrrr.

7. Draw ellipse

 code= Exxxxxyyyyyrrrrrsssss

Draw a ellipse whose center is at (xxxxx,yyyyy), and the length of semi-major axis is rrrrr, the length of semi-minor axis is sssss.

8. Draw a point

 code= Pxxxxxyyyyy

 Draw a point at (xxxxx,yyyyy).

9. Write a string

code= Sccccc<CR>

Draw a graphics string on the screen, the string are quoted between S and <CR>. The maximum string length is 80 characters.

10. Select one color attribute

 code= Axxxxx

Select pen color, the color number is specified by xxxxx, where xxxxx has five digit length.

We will give some example to show graphics ability in the section A.4.

A.3 How to Execute VT.EXE

After PCCOM.SYS is executed (For example, set up 3F8 port), just run VT to enter virtual terminal evaluation mode. The screen you will see is shown below.

You may key in character from keyboard to communicate with host computer or select function to setup communication parameters. All available function keys are shown in the following.

F1 HELP

When press F1 key, system will display functions that you can select.

F2 S/CTRL

Press F2 key will send XOFF code to host computer to notice that virtual terminal is too busy. When you want set XON to host computer again, please press Q/CTRL.

F3 SETUP

Setup the communication protocol such as baud rate, data bits, stop bits ... etc.

F4 C/CTRL

Press F4 key will send C/CTRL code to remote computer to kill the executing process.

F5 LISTCFG

 List the communication parameters on the screen.

F6 SAVECFG

Save the setup communication parameters to disk file named VT.CFG.

F7 Download (receive data from host)

Receive data from the remote site then save these data to a user specified file.

F8 Upload (transmit data to remote site)

Transfer a user specified file that located at PC (which is now run VT) to remote site.

F9 EXIT

 Exit virtual terminal evaluator.

F10 SHELL

Fork MS/DOS shell command interpreter, the terminal evaluator is still resident on the main memory. When you enter shell command, you may run any MS/DOS commands and programs, because you stay at MS/DOS mode. To enter VT again, please type EXIT.

A.3.1 Download Data from Host

When you select F7, system will ask a file name which is used to save data that sent from remote computer.

Suppose your virtual terminal is connected to XENIX operating system and you want download a file aa from host to PC, and

save it in PC.DOC file, the procedure is

A.3.2 Upload Data to Host

When you select F8, system will ask a file name and send the file contents to host computer. Under XENIX operating system, suppose you want send a file PC.DOC from PC to host computer and save it in aa file, the upload procedure is

 cat > aa

 F8

 PC.DOC

 <CR>
A.3.3 Setup

When you select F3, you may modify the communication parameters. After communication parameters are setup, you may use F6 to save the configuration and F5 to list the configuration. When VT is loaded, it will check VT.CFG to load the last save configuration automatically. The communication parameters are list in the following.

1. port number

 Select which I/O port.

2. baud rate

 Select communication speed.

3. data bits

 Select data bits

4. stop bits

 Select stop bits.

5. parity

 Press SPACE bar to select parity.

6. ECHO

Press SPACE bar to select local ECHO ON/OFF. When your host computer has ability to send back the received character, you must select local ECHO OFF to let host computer prompt your typing character.

7. new line

Press SPACE bar to select new line ON/OFF. VT will add <CR> code when it receive <LF> at new line ON mode.

8. delay time

Select delay time interval between two transmitting characters when upload is processing.

A.4 Examples

The following control string will draw a figure which is shown in the next page. Don't forget to press any key to enter text mode.

<ESC>P

L00000000000010000000

L00100000000010000100

L00100001000000000100

L00000001000000000000

P0005000030

P0005200032

P0005400034

P0005600036

P0005800038

P0006000040

P0006200042

P0006400044

P0006600046

P0006800048

C001000010000050

C001000010000040

C001000010000030

C001000010000020

C001000010000010

C001000010000005

C001000010000015

C001000010000025

C001000010000035

C001000010000045

C001000010000055

M0010000100

D0030000200

D0009000090

Q

Where <ESC> is an ASCII code of <ESC>. We have not store <ESC>P to the VT.DOC file, so that you must send it from keyboard to enter graphics mode.

 APPENDIX B

COMMUNICATION PARAMETERS
B.1 Communication parameters

baud rate

The transmit speed between two serial ports.

parity

The parity bit is used in error detection. Three different settings are used, which are ODD, EVEN, and NONE parity.

data bits

The number of bits in each transmitted or received serial character. Either 7 or 8 data bits can be specified.

stop bits

The stop bits is used to detect where one character ends and another starts. Either 1 or 2 stop bits can be specified. When stop bits is specified then stop bits are generated or checked in the transmit or

receive data respectively. IRQ specifies which interrupt is emerged when the character is received from serial port.

interrupt vector

The interrupt vector is a global interrupt indicator which is designed at several multi-serial adapters (such as four serial card, eight serial card ... etc.) to check which serial port emerges interrupt. Since several serial ports are designed at one adapter and use the common IRQ, so that interrupt vector is useful to detect which port emerges interrupt. For example, suppose interrupt vector address of hardware adapter is set to 2C2H, the relationship between each port corresponds to the interrupt indicator is shown in the follows. If you specify this interrupt vector address, when interrupt is emerged, device driver may check address 2C2H to find which port emerges interrupt.

	bit 0
	port 1

	bit 1
	port 2

	bit 2
	port 3

	bit 3
	port 4

	bit 4
	port 5

	bit 5
	port 6

	bit 6
	port 7

	bit 7
	port 8

The standard COM1 and COM2 need not interrupt vector. We will list several famous multi-serial adapters in the appendix D.

modem control register

The contents of the modem control register are indicated and described below.

	bit 0
	DTR

	bit 1
	RTS

	bit 2
	OUT1

	bit 3
	OUT2

	bit 4
	LOOP(0)

	bit 5
	0

	bit 6
	0

	bit 7
	0

The bit 0 (DTR) and bit 1 (RTS) are hardware handshaking. To let PCCOM in the normal mode, you must set the bit 0 and bit 1 to 1. The bit 4 provides a loopback feature for diagnostic testing of the serial port. In this case, you must set bit 4 to be 0. OUT1 and OUT2 are auxiliary user designed output which is used to enable/disable interrupt in most adapters, so that you must control OUT1 and OUT2 carefully to let your serial port emerges an interrupt. You may set OUT1=0 and OUT2=1 to enable interrupt of the most standard COM1 and COM2 adapter, however some adapters may not work in this case, you can ask OUT1 and OUT2 control from origin hardware manufacturer or trial and error to find one of four combination (0,0), (0,1), (1,0), (1,1). Appendix D will list OUT1 and OUT2 signal of our multi-serial family. Some 8250/16450 chip will generate OUT1 = 1 and OUT2 = 1 when internal loop is selected (bit 4 is set to 1), so that they will not emerge an interrupt when internal loop feature is test.

active status

The active status is used to specify activation status of interrupt vector. Either active low or high can be set. If active low is specified, when the corresponding bit of interrupt vector is 0, means the corresponding port emerges an interrupt, otherwise if the bit is 1, means no interrupt

is active.

XON/XOFF

XON/XOFF is software handshaking, which is used to prevent the lost of data while communication between two serial ports. Suppose we connect two computer named local computer and remote computer, if local computer is too busy to receive data from remote computer, it send XOFF (S/CTRL whose code is 17) to remote computer to notice he is in busy mode. When remote computer receives XOFF, it will stop transmission until the local computer sends XON (Q/CTRL whose code is 19) to continue transmission. The same manner is activated at remote computer.

DTR and DSR

The DTR/DSR is hardware handshaking. Data Set Ready(DSR) indicates that the modem or data set is ready to establish communications link and transfer data with the serial interface. Data Terminal Ready(DTR) informs the modem or data set that the serial interface is ready to communication.

RTS and CTS

The RTS/CTS is hardware handshaking. Clear To Send(CTS) and Request To Send(RTS) can be used to establish communication protocol. RTS informs the modem or data set that the serial interface is ready to transmit data.

B.2 Serial Ports status

 The serial ports status are described in the following.

Carrier Detected

The modem status which provides Data Carrier Detected(DCD) to indicate the voltage level of the associate RS232 line.

Ring Indicator(RI)

Indicates that a telephone ring signal has been received by the modem or data set.

Txmtr SR

 Transmitter shift register of 8250/16450 chip.

Txmtr HR

Transmitter holding register of 8250/16450 chip.

Break Received

Indicates whether the received data input is held in the spacing state for longer than a full word transmission time, that is, the total time of start bit + data bits + parity bit + stop bits.

 Framing Error

 Indicates that the received character did not have a

 valid stop bit.

 Parity Error

Indicates that the received data character does not have the correct even or odd parity.

Overrun Error

Indicates that data in the receiver buffer register was not ready by the processor before the next characters was transferred into the receiver buffer register, thereby destroying the previous character.

Receiver DR full

Received Data Register full. If the flag always set, it means the RS232 port hang up because no interrupt generated when data arrive. Please restart your computer when error occurs.

APPENDIX C

SYNTAX SPECIFICATION OF HARDWARE CONFIGURATION
C.1 Syntax specification

Config := /B:Bios_no /D:Dev_name /A:Pccom

Bios_no := dec_value

Dev_name := Dev_strDev_no, Dev_name

 := Dev_name

 [note : length(Dev_name) <= 8]

Dev_str := ([a..z] | [A..Z]))*

Dev_no := 1..99

Pccom := Com_irq, Pccom

 := Com_irq

 := nil

Com_irq := [Irq:Com_set]

Com_set := Com_vect:Com_set

 := Com_vect

 := nil

Com_vect := Base,Portno,Vector,Active:Com_port

Com_port := Port, Com_port

 := Port

 := nil

Port := (Buf_siz:Baud_rate:Line_control

 :Modem_control:Flow_control)

 := (Buf_siz:Baud_rate:Line_control

 :Modem_control:Flow_control)

 * dec_value

Irq := 2 | 3 | 4 | 5 | 6 | 7 | 10 | 11 | 12

 | 14 | 15

Base := hex_value

Portno := 1 | 2 | 4 | 8

Vector := hex_value | 0

Active := HI | LO

Buf_siz := dec_value k

 := dec_value

 := nil

Baud_rate := dec_value

Line_control := Parity-Data-Stop

Parity := E | O | N

Data := 5 | 6 | 7 | 8

Stop := 1 | 2

Modem_control := Mc+Modem_control

 := Mc

 := nil

Mc = DTR | RTS | OUT1 | OUT2

Flow_control := Fc+Flow_control

 := Fc

 := nil

Fc = DTR | RTS | XON

Comment := # string

 [a whole line comment]

dec_value := decimal number

hex_value := hexadecimal number

C.2 Some Constrains on Configuration Rule

% The size of total buffer in one Com_set must be less than 64K. However, the size of total buffer used in driver can be larger than 64K.

% The number of ports in one Com_set must matches the number of Com_ports in the following definition.

% The maximum size of the buffer allocated for one port is 32K, but The maximum size of the buffer allocated for one set is 64K.

% In Com_port definition, buffer size, baud rate, and line control must be specified, both modem control and flow control could be not specified if you do not want these capabilities, however the separator ":" can not be skipped.

C.3 How to install and configure PCCOM driver

% The PCCOM driver that is DOS-style driver is nstalled when system boots by means of inserting the following line in config.sys

DEVICE=C:PCCOM.SYS @c:\pccom.opt

The content of the file "pccom.opt" is configuration rule specified; the character '@' must be prefixed with the configuration file.

APPENDIX D

MULTI-SERIAL PRODUCTS
PCCOM software is a powerful device driver, which can be link to any hardware that provides serial port. In this appendix, we will introduce how to setup PCCOM software when use our products. We note that all examples are default setting that satisfy origin factory setting, however you may set different hardware configuration if you need.

D.1 PCCOM 4 port card

 PCCOM ISA bus 4 port card

 SafLine 4 port card

Four serial adapter provides four serial ports, the origin factory setting are shown in the following.

	 port 1 address
	 2A0

	 port 2 address
	2A8

	 port 3 address
	2B0

	 port 4 address
	2B8

	 interrupt vector address
	2BF

	 interrupt active status
	low

	 interrupt
	IRQ5

	 modem control register
	RTS+DTR

To setup four serial adapter, the commands are shown in the PCCOM4.OPT file.

/B:2

/D:COM3

/A:[5:

 2A0,4,2BF,LO:

 (2k:9600:N-8-1:RTS+DTR:XON) * 4]
D.2 Eight Serial Adapter

Eight serial adapter provides eight serial ports, the origin factory setting are shown in the following.

	 port 1 address
	2A0

	 port 2 address
	2A8

	 port 3 address
	2B0

	 port 4 address
	2B8

	 interrupt vector address
	2BF

	 interrupt active status
	low

	 interrupt
	IRQ5

	 port 5 address
	1A0

	 port 6 address
	1A8

	 port 7 address
	1B0

	 port 8 address
	1B8

	 interrupt vector address
	1BF

	 interrupt active status
	low

	 interrupt
	IRQ7

	 modem control register
	RTS+DTR

To setup eight serial adapter, the commands are shown in the 8PORT.OPT file.

/B:2

/D:COM3

/A:[5:

 2A0,4,2BF,LO:

 (2k:9600:N-8-1:RTS+DTR:XON) * 4],

[7:

1A0,4,1BF,LO:

(2k:9600:N-8-1:RTS+DTR:XON) * 4]

D.3 Dual Eight Serial Adapter

Dual eight serial adapter provides eight serial ports, the origin factory setting are shown in the following.

	 port 1 address
	290

	 port 2 address
	298

	 port 3 address
	2A0

	 port 4 address
	2A8

	 port 5 address
	2B0

	 port 6 address
	2B8

	 port 7 address
	2C0

	 port 8 address
	2C8

	 Interrupt vector address
	2D0

	 interrupt active status
	high

	 interrupt
	IRQ4

	 modem control register
	RTS+DTR

 To setup dual eight serial adapter, the commands are shown in the DUAL8.OPT file.

/B:2

/D:COM3

/A:[4:

 290,8,2D0,HI:

 (2k:9600:N-8-1:RTS+DTR:XON) * 8]

D.4 PCCOM 8 port card

 PCCOM ISA bus 8 port card

 SafLine 8 port card

Super Eight serial adapter provides eight serial ports, the origin factory setting are shown in the following.

	port 1 address
	280

	 port 2 address
	288

	 port 3 address
	290

	 port 4 address
	298

	 port 5 address
	2A0

	 port 6 address
	2A8

	 port 7 address
	2B0

	 port 8 address
	2B8

	 interrupt vector address
	2C2

	 interrupt active status
	low

	 interrupt
	IRQ4

	 modem control register
	RTS+DTR

To setup super eight serial adapter, the commands are shown in the PCCOM8.OPT file.

/B:2

/D:COM3

/A:[4:

 280,8,2C2,LO:

 (2k:9600:N-8-1:RTS+DTR:XON) * 8]

D.5 Standard COM1 and COM2

The interrupt setting and port address of standard COM1 and COM2 are shown in the following.

	COM1 address
	3F8

	 COM2 address
	2F8

	 interrupt for COM1
	IRQ4

	 interrupt for COM2
	IRQ3

	 modem control register
	RTS+DTR+OUT2

To setup COM1 and COM2, the commands are shown in the COM1COM2.OPT file.

/B:0

/D:COM1

/A:[4:

3F8,1,0,LO:

(8k:9600:N-8-1:RTS+DTR+OUT2:XON)],

 [3:

 2F8,1,0,LO:

(8k:9600:N-8-1:RTS+DTR+OUT2:XON)]

D.6 SafLine 16 port card

SafLine 16 port card is composed with two PCCOM 8 port cards, you can set it as two PCCOM 8 port cards. The hardware configuration file is shown in the PCCOM16.OPT file.

D.7
PCCOM 2 Port PCI card

This PnP PCI card products 2 serial ports, and can be set in the OPT file as follows:

/B:2

/D:COM3

/P: [:2: (1K: 9600: N-8-1 :: XON) *2]

D.8 PCCOM 4 Port PCI card

This PNP PCI card provides 8 serial ports and can be set on the OPT file as follows:

/B:2

/D: COM3

/P: [:4: (1K :P600: N-8-1 :: XON) *4]

D.9 PCCOM 8 Port PCI card

This PNP PCI card provides 8 serial ports and can be set on the OPT file as follows:

/B:2

/D: COM3

/P: [:8: (1K:9600 :N-8-1:XON)*8]

APPENDIX E

WARRANTY INFORMATION
E.1 Copyright

Copyright 1993,1994 DECISION COMPUTER INTERNATIONAL CO., LTD. all rights reserved. No part of PCCOM software and manual may be reproduced, transmitted, transcribed, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of DECISION COMPUTER INTERNATIONAL CO., LTD., 4F, No. 31, Alley 4, Lane 36, Sec. 5, Min-Shen East Road,

Taipei, Taiwan, R.O.C. FAX : 886-2-7665702, TELEX : 16059 DECISION, TEL : (02) 766-5753, 7659782, 769-5786.

Each piece of PCCOM package permits user to use PCCOM only on a single computer, a registered user may use the program on a different computer, but may not use the program on more than one computer at the same time.

Corporate licensing agreements allow duplication and distribution of specific number of copies within the licensed institution. Duplication of multiple copies is not allowed except through execution of a licensing agreement. Welcome call for details.

G.2 Warranty Information

PCCOM warrants that for a period of one year from the date of purchase (unless otherwise specified in the warranty card) that the goods supplied will perform according to the specifications defined in the user manual. Furthermore that the PCCOM product will be supplied free from defects in

Materials and workmanship and be fully functional under normal usage.

In the event of the failure of a PCCOM product within the specified warranty period, PCCOM will, at its option, replace or repair the item at no additional charge. This limited warranty does not cover damage resulting from incorrect use, electrical interference, accident, or modification of the product.

All goods returned for warranty repair must have the serial number intact. Goods without serial numbers attached will not be covered by the warranty.

Transportation costs for goods returned must be paid by the purchaser. Repaired goods will be dispatched at the expense of PCCOM.

To ensure that your PCCOM product is covered by the warranty provisions, it is necessary that you return the Warranty card.

Under this Limited Warranty, PCCOM's obligations will be limited to repair or replacement only, of goods found to be defective as specified above during the warranty period. PCCOM is not liable to the purchaser for any damages or losses of any kind, through the use of, or inability to use, the PCCOM product.

PCCOM reserves the right to determine what constitutes warranty repair or replacement.

Return Authorization: It is necessary that any returned goods are clearly marked with an RA number that has been issued by PCCOM. Goods returned without this authorization

will not be attended to.

 F1: HELP Copyright DECISION-COMPUTER Co., Ltd.

Don’t enter <CR>

Select F7

Enter file name

SETUP RS232

INTERNAL LOOP TEST

EXTERNAL LOOP TEST

	AUTO TEST

SAVE CONFIGURATION

EXIT PROGRAM

 cat aa

 F7

 PC.DOC

<CR>

 F1: HELP Copyright DECISION-COMPUTER Co., Ltd.

PC COM. TEST PROGRAM V2.0

		

DECISION-COMPUTER INTERNATIONAL CO., LTD.

� EMBED PBrush ���

page
1

DECISION Computer International

_1038807184

_1038850443

_1038786854

