
 Fundamentals of FOSSIL implementation and use
 Version 5, February 11, 1988
 Rick Moore, Solar Wind Computing

 FidoNet Address: Zone 1, Network 115, Node 333
(1:115/333)

Copyright (C) 1987, VEP Software, Naugatuck, CT 06770. All rights
reserved.
Copyright (C) 1988, Rick Moore, Homewood, IL, 60430. All rights
reserved.

This document may be freely used or copied by anyone interested
in the data contained herein. No fees may be charged for
distribution of this document. You will be held accountable for
all such charges, and expected to either reimburse those persons
or organizations so charged, or to make a donation in the exact
amount of those fees to the International FidoNet Association, to
assist them in their efforts to advance the technology of
personal computer telecommunications.

Fundamentals of FOSSIL implementation and use
Page 2

Introduction

 A. Objectives of this document

 This document is directed at implementers or intellectuals.
It is meant for use in implementing applications that can use
FOSSIL drivers, or for details needed to implement a new FOSSIL.
As such it won't always go out of its way to explain itself to the
neophyte.

 This document will have served its purpose to you if you are
able to use the data contained within to perform either of the
above tasks. If you feel that necessary data has been omitted
please contact Rick Moore at the above listed address so that the
appropriate changes can be made. Any lines changed in the current
version are marked with "|" in the left margin.

 B. Historical perspective

 For those people who were not lucky enough to have an IBM PC
or a system nearly completely compatible, the world has not been
very friendly. With his implementation of the Generic Fido(tm)
driver, Tom Jennings made it possible for systems that had
nothing in common with an IBM PC except an 808x-class processor,
and the ability to run MS-DOS Version 2 and above,to run his
Fido(tm) software. That was a lot to ask, and a lot of people
thought it was enough.

 But not everyone. While Thom Henderson was debugging Version
4.0 of his SEAdog(tm) mail package, an "extended" Generic driver
was designed (in cooperation with Bob Hartman) as a quick
kludge to help him get past a problem with certain UART chips.The
new hook was quickly pounced upon by Vince Perriello, who, with
almost DAILY prodding (ouch! it still hurts) by Ken Kaplan,had
been working with Henderson to get DEC Rainbow support into
SEAdog. Vince then coded a driver to use this hook and - Voila! -

SEAdog 4.0 started working like a champ on the Rainbow.

 At the same time something was rotten in the state of Texas.
Wynn Wagner started encountering some serious difficulties in
his Opus development effort. Specifically, he couldn't force the
Greenleaf(tm) Communications Libraries to behave in exactly the
way he felt Opus required. Enter Bob Hartman.Having already
enjoyed success in the effort with Thom Henderson, he suggested to
Wynn that with very few extensions, any driver that was
already SEAdog(tm) 4.0 compatible could drive Opus as well.
About that time, Vince called Wynn to discuss porting Opus to the
DEC Rainbow. Wynn called Bob, Bob called Vince, and the FOSSIL
driver came into existence.

 FOSSIL is an acronym for "Fido/Opus/SEAdog Standard Interface
Layer". To say that the concept has gained wide acceptance in the
FidoNet community would be an understatement. Henk Wevers' DUTCHIE
package uses the FOSSIL communications services. Ron Bemis'
OUTER package uses FOSSIL services for everything it does and as a
result it is completely generic. There are already FOSSIL
implementations for the Tandy 2000, Heath/Zenith 100, Sanyo 555
and other "non-IBM" architectures. With each new 'port' of the
spec, the potential of a properly coded FOSSIL application grows!

Fundamentals of FOSSIL implementation and use
Page 3

Basic conventions and calling method

 C. Basic principles of a FOSSIL driver

 1) Interrupt 14h.

The one basic rule that the driver depends upon, is the
ability for ANY target machine to allow the vector for INT 14h
(usually pointing to BIOS comm functions) to be "stolen" by
the driver. In a system where the INT 14h vector is used
already, it must be possible to replace the "builtin"
functionality with that of a FOSSIL, when an application that
wants the use of a FOSSIL is to be run on the target machine.

 2) How to install a FOSSIL driver in a system

There's no hard and fast way to do this. The FOSSIL might be
implemented as part of a device driver (like Ray Gwinn's
X00.SYS) and therefore gets loaded using a line in CONFIG.SYS
at bootup time. It might be done as a TSR (terminate and stay
resident) program, in which event you install it by running
the program (DECcomm by Vince Perriello and Opus!Comm by Bob

 Hartman work this way, for example).

 3) How an application can detect the presence of a FOSSIL

The driver has a "signature" that can be used to determine
whether it is present in memory. At offset 6 in the INT 14h
service routine is a word, 1954h, followed by a byte that
specifies the maximum function number supported by the driver.
This is to make it possible to determine when a driver is
present and what level of functionality it provides. Also, the
Init call (see below) returns a 1954h in AX. SEAdog(tm)
looks at the signature and Opus just goes for the Init. Fido
doesn't do either.

 4) How to call a FOSSIL function

The FOSSIL driver is entered by issuing a software
Interrupt 14h from the application program. The code
corresponding to the desired function should be in 8-bit
register AH. For calls that relate to communications, the port
number will be passed from the application in register DX.
When DX contains a zero (0) it signifies use of COM1, or
whatever the "first" serial port on your machine is called. A
one (1) in DX points the driver at COM2, and so on. A value
of 00FFh in DX is considered a special case where the driver
should do no actual processing but return SUCCESS. In the
specific case of Init/Uninit with DX=00FFh,the FOSSIL should
perform all non-communications processing necessary with
such calls. In some machines (H/Z-100 for example), the
FOSSIL must assume control of the keyboard in order to
service the keyboard functions.

FOR ALL FUNCTIONS, ALL REGISTERS NOT SPECIFICALLY CONTAINING
A FUNCTION RETURN VALUE MUST BE PRESERVED ACROSS THE CALL.

Fundamentals of FOSSIL implementation and use
Page 4

Communications functions

D. Functions currently defined for FOSSILs

 AH = 00h Set baud rate

 Parameters:
 Entry: AL = Baud rate code
 DX = Port number
| Exit: AX = Port status (see function 03h)

This works the same as the equivalent IBM PC BIOS call,
except that it ONLY selects a baud rate. This is passed in
the high order 3 bits of AL

 as follows:

 010 = 300 baud
 011 = 600 ''
 100 = 1200 ''
 101 = 2400 ''
 110 = 4800 ''
 111 = 9600 ''
 000 = 19200 '' (Replaces old 110 baud mask)
 001 = 38400 '' (Replaces old 150 baud mask)

 The low order 5 bits can be implemented or not by the FOSSIL,
but in all cases, if the low order bits of AL are 00011, the
result should be that the communications device should be set to
eight data bits, one stop bit and no parity. This setting is a
MINIMUM REQUIREMENT of Fido, Opus and SEAdog. For purposes of
completeness, here are the IBM PC "compatible" bit settings:

 Bits 4-3 define parity: 0 0 no parity
 1 0 no parity
 0 1 odd parity
 1 1 even parity

 Bit 2 defines stop bits: 0 1 stop bit;
 1 1.5 bits for 5-bit char;
 2 for others

 Bits 1-0 character length: 0 0 5 bits

 0 1 6 bits
 1 0 7 bits
 1 1 8 bits

Fundamentals of FOSSIL implementation and use
Page 5

Communications functions

 AH = 01h Transmit character with wait

 Parameters:
 Entry: AL = Character
 DX = Port number
 Exit: AX = Port status (see function 03h)

AL contains the character to be sent. If there is room in
the transmit buffer the return will be immediate, otherwise
it will wait until there is room to store the character in the
transmit buffer. On return, AX is set as in a status request
(see function 03h).

 AH = 02h Receive character with wait

 Parameters:
 Entry: DX = Port number
 Exit: AH = 00h
 AL = Input character

If there is a character available in the receive buffer,
returns with the next character in AL. It will wait until a
character is received if none is available.

 AH = 03h Request status

 Parameters:
 Entry: DX = Port number
 Exit: AX = Status bit mask (see below)

 Returns with the line and modem status in AX. Status bits
returned are:

 In AH:
 Bit 0 = RDA - input data is available in buffer
| Bit 1 = OVRN - the input buffer has been overrun.
All
| characters received after the
buffer is
| full should be discarded.
 Bit 5 = THRE - room is available in output buffer
 Bit 6 = TSRE - output buffer is empty

 In AL:
| Bit 3 = Always 1 (always return with this bit set
to 1)
 Bit 7 = DCD - carrier detect

This can be used by the application to determine whether
carrier detect (CD) is set, signifying the presence/absence
of a remote connection, as well as monitoring both the input
and output buffer status. Bit 3 of AL is always returned set
to enable programs to use it as a carrier detect bit on
hardwired (null modem) links.

Fundamentals of FOSSIL implementation and use
Page 6

Communications functions

 AH = 04h Initialize driver

 Parameters:
 Entry: DX = port number
 (BX = 4F50h
| ES:CX = ^C flag address --- optional)
 Exit: AX = 1954h if successful
| BL = maximum function number supported
| (not counting functions 7Eh and
above)
| BH = rev of FOSSIL doc supported

This is used to tell the driver to begin operations, and to
check that the driver is installed. This function should be
called before any other communications calls are made. At
this point all interrupts involved in supporting the comm port
(specified in DX) should be set up for handling by the
FOSSIL, then enabled. If BX contains 4F50h, then the
address specified in ES:CX is that of a ^C flag byte in the
application program, to be incremented when ^C is detected in
the keyboard service routines. This is an optional service
and only need be supported on machines where the keyboard
service can't (or won't) perform an INT 1Bh or INT 23h when
| a Control-C is entered. DTR is raised by this call. The
baud rate must | NOT be changed by this call.

 NOTE: Should an additional call to this service occur (2
 Inits or Init, Read,Init, etc.) the driver should reset all
 buffers, flow control, etc.
 to the INIT state and return SUCCESS.

 AH = 05h Deinitialize driver

 Parameters:
 Entry: DX = Port number
 Exit: None

This is used to tell the driver that comm port operations are
ended. The function should be called when no more comm port
functions will be used on the port specified in DX. DTR is
NOT affected by this call.

 AH = 06h Raise/lower DTR

 Parameters:
 Entry: DX = Port number
 AL = DTR state to be set (01h = Raise, 00h =
 Lower)
 Exit: None

This function is used to control the DTR line to the modem. AL
= 00h means lower DTR (disable the modem), and AL = 01h means
to raise DTR (enable the modem). No other function (except
Init) should alter DTR.

Fundamentals of FOSSIL implementation and use
Page 7

Communications functions

 AH = 07h Return timer tick parameters

 Parameters:
 Entry: None
 Exit: AL = Timer tick interrupt number
 AH = Ticks per second on interrupt number
 in AL
 DX = Approximate number of milliseconds
 per tick

This is used to determine the parameters of the timer tick on
any given machine. Three numbers are returned:

 AL = Timer tick interrupt number
 AH = Ticks per second on interrupt number shown in AL
 DX = Milliseconds per tick (approximate)

Applications can use this for critical timing (granularity of
less than one second) or to set up code (such as a watchdog)
that is executed on every timer tick. See function 16h
(add/delete function from timer tick) for the preferred way of
actually installing such code.

 AH = 08h Flush output buffer

 Parameters:
 Entry: DX = Port number
 Exit: None

This is used to force any pending output. It does not return
until all pending output has been sent. You should use this
call with care. Flow control (documented below) can make
your system hang on this call in a tight an interruptible loop
under the right circumstances.

 AH = 09h Purge output buffer

 Parameters:
 Entry: DX = Port number
 Exit: None

This is used to purge any pending output. Any output data
remaining in the output buffer (not transmitted yet) is
discarded.

 AH = 0Ah Purge input buffer

 Parameters:
 Entry: DX = Port number
 Exit: None

This is used to purge any pending input. Any input data
which is still in the buffer is discarded.

Fundamentals of FOSSIL implementation and use
Page 8

Communications functions

 AH = 0Bh Transmit no wait

 Parameters:
 Entry: DX = Port number
 Exit: AX = 0001h - Character was accepted
 = 0000h - Character was not accepted

This is exactly the same as the "regular" transmit call,
except that if the driver is unable to buffer the character
(the buffer is full), a value of 0000h is returned in AX. If
the driver accepts the character (room is available), 0001h
is returned in AX.

 AH = 0Ch Non-destructive read-ahead

 Parameters:
 Entry: DX = Port number
 Exit: AH = 00h - Character is
 AL = Next character available
 AX = FFFFh - Character is not
 available

Return in AL the next character in the receive buffer. If the
receive buffer is empty, return FFFFh. The character
returned remains in the receive buffer. Some applications
call this "peek".

 AH = 0Dh Keyboard read without wait

 Parameters:
 Entry: None
 Exit: AX = IBM-style scan code (Character

available)
= FFFFh (Character not
 available)

Return in AX the next character (non-destructive read
ahead) from the keyboard; if nothing is currently in the
keyboard buffer, return FFFFh in AX. Use IBM-style
function key mapping in the high order byte. Scan codes
for non-"function" keys are not specifically required, but
may be included. Function keys return 00h in AL and the "scan
code" in AH.

 AH = 0Eh Keyboard read with wait

 Parameters:
 Entry: None
 Exit: AX = IBM-style scan code

Return in AX the next character from the keyboard; wait if no
character is available. Keyboard mapping should be the same as
function 0Dh.

Fundamentals of FOSSIL implementation and use
Page 9

Communications functions

 AH = 0Fh Enable or disable flow control

 Parameters:
 Entry: AL = Bit mask describing requested flow
 control
 DX = Port number
 Exit: None

TRANSMIT flow control allows the "other end" to restrain the
transmitter when you are over-running it. RECEIVE flow
control tells the FOSSIL to attempt to do just that if it is
being overwhelmed.

 Two kinds of basic flow control are supported:

 Bit 0 = 1 Xon/Xoff on transmit
 Bit 1 = 1 CTS/RTS (CTS on transmit, RTS on
 receive)
 Bit 2 Reserved
 Bit 3 = 1 Xon/Xoff on Receive

Flow control is enabled, or disabled, by setting the
appropriate bits in AL for the types of flow control we want
to ENABLE (value = 1), and/or DISABLE (value = 0), and
calling this function. Bit 2 is reserved for DSR/DTR, but is
not currently supported in any implementation.

Enabling transmit Xon/Xoff will cause the FOSSIL to stop
transmitting upon receiving an Xoff. The FOSSIL will resume
transmitting when an Xon is received.

Enabling CTS/RTS will cause the FOSSIL to cease transmitting
when CTS is lowered. Transmission will resume when CTS is
raised. The FOSSIL will drop RTS when the receive buffer
reaches a predetermined percentage full. The FOSSIL will
raise RTS when the receive buffer empties below the
predetermined percentage full. The point(s) at which this
occurs is left to the individual FOSSIL implementor.

Enabling receive Xon/Xoff will cause the FOSSIL to send a
Xoff when the receive buffer reaches a pre-determined
percentage full. An Xon will be sent when the receive buffer
empties below the pre-determined percentage full. The point(s)
at which this occurs is left to the individual FOSSIL
implementor.

Applications using this function should set all bits ON
in the high nibble of AL as well. There is a compatible (but
not identical) FOSSIL driver implementation that uses the
high nibble as a control mask. If your application sets the
high nibble to all ones, it will always work,regardless of
the method used by any given driver.

Fundamentals of FOSSIL implementation and use
Page 10

Communications functions

AH = 10h Extended Control-C / Control-K checking and transmit
 on/off

 Parameters:
 Entry: AL = Bit mask (see below)
 DX = Port number
 Exit: AX = 0001h - Control-C/K has been received
 = 0000h - Control-C/K has not been

received

 This is used for BBS operation, primarily. A bit mask is
passed in AL with the following flags:

 Bit 0 Enable/disable Control-C / Control-K checking
 Bit 1 Disable/enable the transmitter

The Enable (bit 0 = 1) and Disable (Bit 0 = 0) Control
C/Control-K check function is meant primarily for BBS use.
When the checking is enabled, a Control-C or Control-K
received from the communications port will set a flag
internal to the FOSSIL driver, but will not be stored in the
input buffer. The next use of this function will return the
value of this flag in register AX then clear the flag for the
next occurrence. The returned value is used by the BBS
software to determine whether output should be halted or not.

The Disable (Bit 1 = 1) and Enable (Bit 1 = 0) Transmitter
function lets the application restrain the asynchronous driver
from output in much the same way as XON/XOFF would.

 AH = 11h Set current cursor location.

 Parameters:
 Entry: DH = Row (line)
 DL = Column
 Exit: None

This function looks exactly like like INT 10h, subfunction 2,
on the IBM PC. The cursor location is passed in DX: row in DH
and column in DL. The function treats the screen as a
coordinate system whose origin (0,0) is the upper left hand
corner of the screen.

 AH = 12h Read current cursor location.

 Parameters:
 Entry: None
 Exit: DH = Row (line)
 DL = Column

Looks exactly like INT 10h, subfunction 3, on the IBM PC.
The current cursor location (using the same coordinate
system as function 16h) is passed back in DX.

Fundamentals of FOSSIL implementation and use
Page 11

Communications functions

 AH = 13h Single character ANSI write to screen.

 Parameters:
 Entry: AL = Character to display
 Exit: None

The character in AL is sent to the screen by the fastest
method possible that allows ANSI processing to occur (if
available). This routine should not be used in such a way that
DOS output (which is not re-entrant) can not be employed by
some FOSSIL driver to perform the function (in fact, on the
IBM PC that is likely to be how it's done). On some systems
such as the DEC Rainbow this will be a very fast method of
screen writing.

 AH = 14h Enable or disable watchdog processing

 Parameters:
 Entry: AL = 01h - Enable watchdog
 = 00h - Disable watchdog
 DX = Port number
 Exit: None

When watchdog is enabled, the state of the carrier detect
(CD) line on the comm port specified in DX should be
constantly monitored. Should the state of that line become
FALSE (carrier lost), the system should be re- booted, to
enable the BBS (or other application) to start up again. This

 monitor is not affected by Init/Uninit etc.

 AH = 15h Write character to screen using BIOS support
routines

 Parameters:
 Entry: AL = Character to display
 Exit: None

The character in AL is sent to the screen using BIOS-level
Input/Output routines. This differs from function 13h in that
DOS I/O CAN NOT be used, as this function might be called from
driver level.

Fundamentals of FOSSIL implementation and use
Page 12

Communications functions

 AH = 16h Insert or delete a function from the timer tick
chain

 Parameter:
 Entry: AL = 01h - Add a function
 = 00h - Delete a function
| ES = Segment of function
 DX = Offset of function
 Exit: AX = 0000h - Operation successful
 = FFFFh - Operation unsuccessful

This function is used to allow a central authority to manage
the timer interrupts, so that as code is loaded and unloaded,
the integrity of the "chain" is not compromised. Rather than
using the traditional method of saving the old contents of the
timer vector, storing the address of your routine there, and
executing a far call to the "old" routine when yours is done,
instead you call this function. It manages a list of such
entry points and calls them on a timer tick (interrupt) using
a FAR call. All the usual cautions about making DOS calls
apply (that is, DON'T!).

This makes it possible for a program to get in and out of the
tick chain without having to know whether another program has
also done so since it first insinuated itself. At least 4
entries should be available in the driver's table (including
one to be used by Watchdog if implemented that way).

 AH = 17h Reboot system

 Parameters:
 Entry: AL = 00h - "Cold boot"
 = 01h - "Warm boot"

Perform the old 3-finger salute. Used in extreme emergency by
code that can't seem to find a "clean" way out of the trouble
it has gotten itself into. Hopefully it won't happen while
you're computing something in the other half of a DoubleDOS
system. If your machine can make a distinction

between a "cold" (power-up, self-test and boot) and a "warm"
(just boot) bootstrap, your FOSSIL should support the flag in
AL. Otherwise just do whatever bootstrap is possible.

Fundamentals of FOSSIL implementation and use
Page 13

Communications functions

| AH = 18h Read block (transfer from FOSSIL to user buffer)

| Parameters:
| Entry: CX = Maximum number of characters to
transfer
| DX = Port number
| ES = Segment of user buffer
| DI = Offset into ES of user buffer
| Exit: AX = Number of characters actually
transferred

A "no-wait" block read of 0 to FFFFh characters from the
FOSSIL inbound ring buffer to the calling routine's buffer.
ES:DI are left unchanged be the call; the count of bytes
actually transferred will be returned in AX.

| AH = 19h Write block (transfer from user buffer to FOSSIL)

| Parameters:
| Entry: CX = Maximum number of characters to
transfer
| DX = Port number
| ES = Segment of user buffer
| DI = Offset into ES of user buffer
| Exit: AX = Number of characters actually
transferred

A "no-wait" block move of 0 to FFFFh characters from the
calling program's buffer into the FOSSIL outbound ring
buffer. ES:DI are left unchanged by the call; the count of
bytes actually transferred will be returned in AX.

| AH = 1Ah Break begin or end

| Parameters:
| Entry: AL = 01h - Start sending 'break'
 = 00h - Stop sending 'break'
| DX = port number

Exit: None

Send a break signal to the modem. If AL=01h the driver will
commence then transmission of a break. If AL=00h the
driver will end the break. This is useful for
communications with devices that can only go into 'command
mode' when a BREAK is received. Note: the application is
responsible for the timing of the BREAK. Also, if the
FOSSIL has been restrained by an Xoff received from the
modem, the flag will be cleared. An Init or Un-Init will
stop an in-progress BREAK.

Fundamentals of FOSSIL implementation and use
Page 14

Communications functions

| AH = 1Bh Return information about the driver

| Parameters:
| Entry: CX = Size of user info buffer in bytes
| DX = Port number
| ES = Segment of user info buffer
| DI = Offset into ES of user info buffer
| Exit: AX = Number of bytes actually transferred

Transfer information about the driver and its current status
to the user for use in determining, at the application
level, limits of the driver. Designed to assist "generic"
applications to adjust to "foreign" gear.

| The data structure currently returned by the driver is as
follows (sorry
| but you'll have to live with assembly syntax):

| info equ $; define begin of
structure
| strsiz dw info_size ; size of the structure in
bytes
| majver db curr_fossil ; FOSSIL spec driver
conforms to
| minver db curr_rev ; rev level of this
specific driver
| ident dd id_string ; "FAR" pointer to ASCII
ID string
| ibufr dw ibsize ; size of the input buffer
(bytes)
| ifree dw ? ; number of bytes left in
buffer
| obufr dw obsize ; size of the output
buffer (bytes)
| ofree dw ? ; number of bytes left in
the buffer
| swidth db screen_width ; width of screen on this
adapter
| sheight db screen_height ; height of screen "
"

| baud db ? ; ACTUAL baud rate,
computer to modem
| info_size equ $-info

The ident string should be null-terminated, and NOT contain a
newline. The baud rate byte contains the bits that Function
00h would use to set the port to that speed.

The fields related to a particular port (buffer size, space
left in the buffer, baud rate) will be undefined if port FFh
or an invalid port is contained in DX.

Additional information will always be passed after these, so
that, for example, offset "sheight" will never change with
FOSSIL revision changes.

Fundamentals of FOSSIL implementation and use
Page 15

"Layered Application" services

The functions below are not necessarily FOSSIL related.
However, because dispatchers that support them are hooked on
Interrupt 14H, it behooves the FOSSIL developer to support
them as well to avoid fragmenting memory with several
dispatchers.

| AH = 7Eh Install an "external application" function

| Parameters:
| Entry: AL = Code assigned to external application
| DX = Offset of application entry point
| ES = Segment of application entry point
| Exit: AX = 1954h
| BL = Code assigned to application (same as
input AL)
| BH = 01h - Installation was successful
| = 00h - Installation failed

This call is used by external application code (special
screen drivers, modem code, database code, etc) to link into
the INT 14h service for use by multiple applications. The
"error return" (BH=0 with AX=1954h) should mean that another
application layer has already been installed at that
particular code. Codes 80h through BFh should be supported.

External application codes 80h-83h are reserved by FOSSIL
developers for re-organizing FOSSIL services by type (comm,
screen, keyboard, system).

Installed application code will be entered, via a FAR call, from
the INT 14H dispatcher whenever it is entered with
H=(application code).

If the value returned in AX from this function is not 1954h, the
service code that is trying to be installed should bring up its
own INT 14h code that can service INT 14h functions 7h-BFh (80h-
BFh are "applications").

| AH = 7Fh Remove an "external application" function

| Parameters:
| Entry: AL = Code assigned to external application
| DX = Offset of application entry point
| ES = Segment of application entry point
| Exit: AX = 1954h
| BL = Code assigned to application (same as
input AL)
| BH = 01h - Removal was successful
| = 00h - Removal failed

Removes an application's entry into the table. Usually so it
can remove itself from memory. Error return means ES:DX did not
match or that there is no entry at the slot described by AL.

An application that wants to remove itself from memory can
issue the 7F function to remove itself from the table, then,
if it is successful, get out of memory. If it had to install
itself with an INT 14h dispatcher it may back itself out,
provided no other applications have been installed on top of
it (using its dispatcher).

Fundamentals of FOSSIL implementation and use
Page 16

E. Validation Suite.

Well, there is one, but it's involved. Here is a list of
software that is known to use FOSSIL calls, and the range of
calls used by that software:

 Software package Fossil calls used

 Fido, V11w, generic version 00h - 07h
 SEAdog, V4.1b 00h - 0Eh
 Opus, V1.03a 00h - 17h
 BinkleyTerm, V1.30 00h - 1Bh

While there is certainly no guarantee that your FOSSIL is
bug-free if all the above software runs with it, you have
probably done as much as you can in a test environment if
your FOSSIL is tested with each of these packages.

 F. Technical Discussion.

A FOSSIL echomail conference exists, for the purpose of
exchanging info and implementation details for FOSSIL drivers.
It is coordinated by Ray Gwinn at FidoNet node 1:109/639.
Contact him for details on how to join. Keep in mind though,
that this conference is intended SPECIFICALLY for
implementors of FOSSIL software and not as a general Q&A
conference for people who think FOSSILs have something to
do with paleontology.

G. Distribution Of This Document.

This document may be distribute freely as long as it is not
modified in any way. Please list all changes and
deviations in a given FOSSILimplementation in an addendum
contained in a separate file added to the

FOSSIL archive. Also, please do not distribute this
document without the accompanying version of FOSSIL.CHT. This
will help avoid confusion, among both FOSSIL implementors and
application developers.

